3.203 \(\int \sqrt{\tan (c+d x)} (a+i a \tan (c+d x))^{5/2} \, dx\)

Optimal. Leaf size=182 \[ -\frac{23 (-1)^{3/4} a^{5/2} \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{4 d}-\frac{a^2 \tan ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d}+\frac{9 i a^2 \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{4 d}-\frac{(4+4 i) a^{5/2} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d} \]

[Out]

(-23*(-1)^(3/4)*a^(5/2)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(4*d) - ((
4 + 4*I)*a^(5/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d + (((9*I)/4)*a^2*
Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/d - (a^2*Tan[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.549187, antiderivative size = 182, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 9, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.321, Rules used = {3556, 3597, 3601, 3544, 205, 3599, 63, 217, 203} \[ -\frac{23 (-1)^{3/4} a^{5/2} \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{4 d}-\frac{a^2 \tan ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d}+\frac{9 i a^2 \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{4 d}-\frac{(4+4 i) a^{5/2} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Tan[c + d*x]]*(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(-23*(-1)^(3/4)*a^(5/2)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(4*d) - ((
4 + 4*I)*a^(5/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d + (((9*I)/4)*a^2*
Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/d - (a^2*Tan[c + d*x]^(3/2)*Sqrt[a + I*a*Tan[c + d*x]])/(2*d)

Rule 3556

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b^2*(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1))/(d*f*(m + n - 1)), x] + Dist[a/(d*(m + n - 1
)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n*Simp[b*c*(m - 2) + a*d*(m + 2*n) + (a*c*(m - 2) +
b*d*(3*m + 2*n - 4))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a
^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && GtQ[m, 1] && NeQ[m + n - 1, 0] && (IntegerQ[m] || Intege
rsQ[2*m, 2*n])

Rule 3597

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n)/(f*(m + n)), x] +
Dist[1/(a*(m + n)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*A*c*(m + n) - B*(b*c*m + a*
d*n) + (a*A*d*(m + n) - B*(b*d*m - a*c*n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] &
& NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 0]

Rule 3601

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3599

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*B)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \sqrt{\tan (c+d x)} (a+i a \tan (c+d x))^{5/2} \, dx &=-\frac{a^2 \tan ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d}+\frac{1}{2} a \int \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)} \left (\frac{7 a}{2}+\frac{9}{2} i a \tan (c+d x)\right ) \, dx\\ &=\frac{9 i a^2 \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{4 d}-\frac{a^2 \tan ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d}+\frac{1}{2} \int \frac{\sqrt{a+i a \tan (c+d x)} \left (-\frac{9 i a^2}{4}+\frac{23}{4} a^2 \tan (c+d x)\right )}{\sqrt{\tan (c+d x)}} \, dx\\ &=\frac{9 i a^2 \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{4 d}-\frac{a^2 \tan ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d}+\frac{1}{8} (23 i a) \int \frac{(a-i a \tan (c+d x)) \sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx-\left (4 i a^2\right ) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx\\ &=\frac{9 i a^2 \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{4 d}-\frac{a^2 \tan ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d}+\frac{\left (23 i a^3\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \sqrt{a+i a x}} \, dx,x,\tan (c+d x)\right )}{8 d}-\frac{\left (8 a^4\right ) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=-\frac{(4+4 i) a^{5/2} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}+\frac{9 i a^2 \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{4 d}-\frac{a^2 \tan ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d}+\frac{\left (23 i a^3\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+i a x^2}} \, dx,x,\sqrt{\tan (c+d x)}\right )}{4 d}\\ &=-\frac{(4+4 i) a^{5/2} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}+\frac{9 i a^2 \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{4 d}-\frac{a^2 \tan ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d}+\frac{\left (23 i a^3\right ) \operatorname{Subst}\left (\int \frac{1}{1-i a x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{4 d}\\ &=-\frac{23 (-1)^{3/4} a^{5/2} \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{4 d}-\frac{(4+4 i) a^{5/2} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}+\frac{9 i a^2 \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{4 d}-\frac{a^2 \tan ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}{2 d}\\ \end{align*}

Mathematica [A]  time = 3.05915, size = 192, normalized size = 1.05 \[ \frac{a^2 \sqrt{a+i a \tan (c+d x)} \left (\frac{e^{-i (c+d x)} \sqrt{-1+e^{2 i (c+d x)}} \left (23 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{2} e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )-32 \tanh ^{-1}\left (\frac{e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )\right )}{\sqrt{-\frac{i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}}}-2 \sqrt{\tan (c+d x)} (2 \tan (c+d x)-9 i)\right )}{8 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Tan[c + d*x]]*(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(a^2*Sqrt[a + I*a*Tan[c + d*x]]*((Sqrt[-1 + E^((2*I)*(c + d*x))]*(-32*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*
I)*(c + d*x))]] + 23*Sqrt[2]*ArcTanh[(Sqrt[2]*E^(I*(c + d*x)))/Sqrt[-1 + E^((2*I)*(c + d*x))]]))/(E^(I*(c + d*
x))*Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]) - 2*Sqrt[Tan[c + d*x]]*(-9*I + 2*Tan[c
+ d*x])))/(8*d)

________________________________________________________________________________________

Maple [B]  time = 0.04, size = 405, normalized size = 2.2 \begin{align*}{\frac{{a}^{2}}{8\,d}\sqrt{\tan \left ( dx+c \right ) }\sqrt{a \left ( 1+i\tan \left ( dx+c \right ) \right ) } \left ( 23\,i\ln \left ({\frac{1}{2} \left ( 2\,ia\tan \left ( dx+c \right ) +2\,\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }\sqrt{ia}+a \right ){\frac{1}{\sqrt{ia}}}} \right ) \sqrt{-ia}a+18\,i\sqrt{ia}\sqrt{-ia}\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }-4\,\sqrt{ia}\sqrt{-ia}\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }\tan \left ( dx+c \right ) +32\,\ln \left ( 1/2\,{\frac{2\,ia\tan \left ( dx+c \right ) +2\,\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }\sqrt{ia}+a}{\sqrt{ia}}} \right ) a\sqrt{-ia}+8\,i\sqrt{ia}\sqrt{2}\ln \left ({\frac{1}{\tan \left ( dx+c \right ) +i} \left ( 2\,\sqrt{2}\sqrt{-ia}\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }-ia+3\,a\tan \left ( dx+c \right ) \right ) } \right ) a+8\,\sqrt{ia}\sqrt{2}\ln \left ({\frac{2\,\sqrt{2}\sqrt{-ia}\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }-ia+3\,a\tan \left ( dx+c \right ) }{\tan \left ( dx+c \right ) +i}} \right ) a \right ){\frac{1}{\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }}}{\frac{1}{\sqrt{-ia}}}{\frac{1}{\sqrt{ia}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(5/2),x)

[Out]

1/8/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)*a^2*(23*I*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(
d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a+18*I*(I*a)^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan
(d*x+c)))^(1/2)-4*(I*a)^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)+32*ln(1/2*(2*I*a*t
an(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a*(-I*a)^(1/2)+8*I*(I*a)^(1/2)*2
^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a+
8*(I*a)^(1/2)*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(ta
n(d*x+c)+I))*a)/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(I*a)^(1/2)/(-I*a)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \sqrt{\tan \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((I*a*tan(d*x + c) + a)^(5/2)*sqrt(tan(d*x + c)), x)

________________________________________________________________________________________

Fricas [B]  time = 2.52395, size = 1835, normalized size = 10.08 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/4*(sqrt(2)*(11*I*a^2*e^(2*I*d*x + 2*I*c) + 7*I*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x +
2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) - 2*sqrt(529/16*I*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) + d)*
log(1/23*(23*sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2
*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) + 8*I*sqrt(529/16*I*a^5/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-
2*I*d*x - 2*I*c)/a^2) + 2*sqrt(529/16*I*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) + d)*log(1/23*(23*sqrt(2)*(a^2*e^(2*I*
d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) +
 1))*e^(I*d*x + I*c) - 8*I*sqrt(529/16*I*a^5/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/a^2) + 2*sqrt(32
*I*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) + d)*log(1/4*(4*sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x
+ 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) + I*sqrt(32*I*a^5/
d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/a^2) - 2*sqrt(32*I*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) + d)*log(1
/4*(4*sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) +
 I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) - I*sqrt(32*I*a^5/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I
*c)/a^2))/(d*e^(2*I*d*x + 2*I*c) + d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(1/2)*(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.28934, size = 173, normalized size = 0.95 \begin{align*} \frac{i \, \sqrt{-2 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}}{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2}{\left (\frac{-i \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a + i \, a^{2}}{\sqrt{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} a^{2} - 2 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a^{3} + a^{4}}} + 1\right )} \log \left (\sqrt{i \, a \tan \left (d x + c\right ) + a}\right )}{i \, a \tan \left (d x + c\right ) - a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

I*sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*(I*a*tan(d*x + c) + a)^2*((-I*(I*a*tan(d*x + c) + a)*a + I*a^2)/sq
rt((I*a*tan(d*x + c) + a)^2*a^2 - 2*(I*a*tan(d*x + c) + a)*a^3 + a^4) + 1)*log(sqrt(I*a*tan(d*x + c) + a))/(I*
a*tan(d*x + c) - a)